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Abstract. The initial stage of a complex system design
involves understanding and evaluation of various plant
architecture. The conventional approach is to select the
configuration of choice via an exhaustive performance
evaluation process. The procedure involves designing
primitive control laws for each configuration option
until the best choice is achieved. This approach is quite
time consuming and does not necessarily lead to an
optimal choice. An alternative approach is to consider
the asymptotic Bode-step technique to arrive at a
desired configuration choice. The method is simple and
provides a powerful tool in performing system
tradeoffs. The method relies on little information
regarding plant parameters and does not require any
detailed controller design for each system configuration
option. The method can easily lend itself to an
optimized control strategy that is applicable during
both the initial and the final stages of a concept design.
The procedure is demonstrated by applying the
proposed method to the motion control design of the
retroreflector carriage of a spacecraft instrument.

1. Introduction

The initial stage of a concept design requires
understanding of plant properties for multiple system
architecture. System dynamics are not well understood,
and plant parameters, e.g., frequency and damping of
structural modes, sensor type and limitations, actuator
type and limitations, sensor and actuator numbers and
locations, are not well defined. The selection process
for the configuration of choice is usually a tedious task
and relies heavily on extensive trade studies provided
by both mechanical designers and control engineers.
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Underrating the control system performance can lead to
a highly complex and overly expensive system design.
Therefore, the system configuration of choice can not
be finalized before the control systems design is
optimized, On the other hand, ignoring issues related to
system structural dynamics and the associated plant
parameters can also lead to either a costly design, or
even an unrealizable one. Therefore, the control system
design can not be finalized before the architectural and
implementation issues are resolved. That is, neither can
hardware designers, nor can control engineers
individually dictate a design. In general, appropriate
selection of plant parameters is a tedious task and
requires extensive interactions between mechanical
designers, system engineers, and control engineers to
assess the available control performance for multiple
system configurations. Such interactions are essential to
arrive at a simple and viable system design. This
problem is known as control-structure interaction and is
depicted in Figure 1.

Fig. 1. Control-structure interaction

The control-structure interaction problem may be
trivial when a system design is based heavily on a
previous design heritage. On the other hand, the
control-structure interaction problem can be quite
complicated for a new system design. The conventional
approach is to find the desired configuration option by
means of exhausting iterations as no other practical
method yet exists. The strategy is to evaluate the
control performance of multiple system architecture by
designing preliminary PID-based control laws for each
case. The process generates a system trade matrix



through which the configuration options are narrowed.
The remaining choices arc evaluated further by
applying more detailed control analysis until the final
choice is achieved. Despite the simple nature of the
process, the approach is quite time-consuming and does
not nccessarily lead to an optimal design. A different
approach is to employ a more sophisticated controller
design methodology during the evaluation process;
however, the scheme can be quite costly and has little
practical feasibility. The main objective of this paper is
to propose a simple and powerful tool that is capable of
simplifying this tedious design iteration process. The
strategy is to evaluate the configuration options via the
application of the asymptotic Bode-step method. A
system trade matrix is then constructed to facilitate the
selection process. Once the final choice is selected, an
optimal controller can be designed based on
information derived from the associated Bode diagram
that was used in the final stage of the selection process.

The proposed design process is especially suited for
NASA novel space systems where the conceptual
design and simulation must be done by NASA
engineers and the detailed design and manufacturing is
done by private industry.

2. System trades by PID controllers

Figure 2 illustrates the flow-chart representation of a
typical control system design process. The diagram
shows that a concept design is studied by examining
multiple architectures where each version is also
broken up into multiple configuration options. The
overall control performance must be evaluated for
every individual subversion whose specifications may
require the implementation of multiple servo loops.
The conventional approach is to evaluate the available
control performance of these configuration options by
designing preliminary PID-based control laws for each
case. Once a system trade matrix is obtained, the
configuration options are narrowed to a smaller set, and
the rematning choices are evaluated further by more
detailed control analysis until a final design is achieved.
The corresponding control laws are improved further
by standard control-related techniques, e.g., tuning the
system to certain operating conditions, inclusion of
possible feedforward methods, or implementation of
nonlinear feedback compensation. A better controller
design is typically postponed for the final choice of the
system configuration since higher performance
controller design in the early stage of a design process
is commonly believed to be impractical and unjustified,
especially, for the case that a design option that is not
final and may be subject to rejection.
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Fig. 2. Conventlonal system trade of a concept design.

PID-based controller designs are simple; however, they
do not provide a systematic procedure for assessing the
required control performance, stability, and disturbance
rejection. Moreover, the approach requires designing
separate controllers for each system configuration
option. In addition, the final loop design in each case is
not unique, and this makes it difficult to evaluate the
resulting trade matrix in a unifying framework. Another
important concern is the validity of the results. The
difference in disturbance rejection between the PID and
a high-performance controller can exceed 10 and even
20dB [3], especially, when plants have uncontrollable
flexible modes. Therefore, the trade-off information
obtained from a preliminary PID-based design is often
erroneous, For example, the system configuration “A”
performs better than “B” when PID controller
methods are employed in both cases, where, in fact,
System “B” is more preferable when a high-
performance controller design is employed. In this
respect, a preliminary PID-based design can lead to
hardware design complications, substantial cost impact,
or even major system configuration change at a later
stage of the design process.

3. Asymptotic Bode-step methods

Bode-step method is based on Bode integrals that were
developed in connection with the conceptual design of
wideband feedback armplifiers.

The first Bode integral formula is described by

[miFtdw=o0,

where F =1 + T and T is the negative of the loop
transfer function. The feedback at any specific
frequency w, is called negative when | F(w)l> 1, and
positive if 1F(w)l<1. The above integral formula
implics that the area of the negative fecdback is equal
to the area of positive fecdback over the range of all
frequencies as is illustrated in Figure 3.
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Fig. 3. Feedback as a function of frequency.

One of the primary objectives of a control system
design is to maximize the area of negative feedback
to achieve maximum disturbance rejection over a
specified frequency range, typically known as the
operational bandwidth. The above formula implies
that the negative feedback area is maximized if and
only if the positive feedback area is maximized. The
positive feedback region generally has most of its
concentration near the crossover frequency f,, ie.,

where IT( 2nf, )| = 1. Therefore, a proper loop shaping
in the vicinity of f is essential for achieving maximum

negative feedback over the desired functional
frequency bandwidth.

The value of the feedback is best understood in terms
of Nyquist diagram and is given by the distance from
the critical point (-1, 0j) to the loop gain transfer
function at any given frequency. In light of the above
integral formula, it then follows that the area of
negative feedback is maximized as long as the distance
of the Nyquist diagram of the loop gain transfer
function to (-1,0j) is minimized over the frequency
range of the positive feedback. This implies that the
Nyquist diagram must follow the prescribed stability
margin boundaries as close as possible. Note that the
stability margins are defined in terms of possible plant
parameter variations and minimum requirements on
allowable degrees of process instability [2, 4). The area
is typically described by a rectangle on the logarithmic
Nyquist plane as shown in Figure 4.
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Fig. 4. Stability margin

The second Bode integral formula is known as Bode
phasc integral [1,2,4]. This formula has important
design implications and describes tradeoffs between the
loop phasc lag and the available control performance
(disturbance rejection) over the operational bandwidth.
Let (A’,¢’) and (A”,0”)represent the gain and
phase response pair of two minimum phase transfer
functions that have similar high frequency
characteristics. Figure 5 illustrates the spectrums as a
function of frequency. The Bode phase integral is then
defined by

n ’ 1 T ”n ’
AAO=(A0—A°)=—;J'(¢ — ") du,

where u is the logarithmic frequency, (A)— A} )is in
Nepers, and (¢” — ¢’) is in radians.

, log. sc.

Fig. 5 Spectrum of minimum phase transfer functions

The above formula implies that the value of feedback
over the operational frequency bandwidth is directly
proportional to the value of the associated phase lag.
This means that the larger the phase lag, the greater
the feedback is in the working band. In other words,
the available disturbance rejection is maximized if the
loop phase lag is maximized at all frequencies. On the
other hand, the global stability considerations limit the
amount of phase lag and consequently, limit the amount
of available feedback.

The third Bode integral formula is known as the Bode
phase-gain integral [1,2,4) and is described by

1 7 d(n|7)) |1
o) =— | ———— In(coth -)du,
¢(@o) - _f du In(coth =h)du
where ¢(w, ) is the associated phase of the loop gain
T evaluated at the frequency wy, andu = In(w/ ;).

The above integral implies that the loop phase at any
given frequency is a weighted functional of the loop
gain slope at all frequencies. At a closer look, it is
seen that In(coth 14/2) scales the gain slope heavily
only at frequencics to within a decade on either side
of the frequency point, where the phase is being
evaluated. By further manipulation of the above
formula, it can be shown that for a loop gain with



constant slope of 6n dB/octave, the phase can be
approximated by 90n degrees. This gives a useful
guideline in shaping the open-loop gain for a
specified phase stability margin. Specifically at
higher frequencies, a steep roll-off is usually desired
to attenuate the effects of sensor noise and structural
modes. However, the third integral formula indicates
that such a loop shape at high frequencies may result
in excessive phase lag at the crossover frequency and
ultimately leads to instability. This undesired effect
can be remedied by designing the loop gain to include
a flat piece that extends for 1 or 2 octaves below the
0dB level by a prescribed gain margin. This flat
segment of the response is known as the Bode Step
and plays a crucial part in satisfying the high-
frequency roll-off requirements and the phase
stability margin limitations. Figure 6 presents an
sketch of the Nyquist diagram in the L-plane for a
square stability margins.
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Fig. 6. Bode diagram with Bode step

Figure 7 illustrates the Bode diagram representation
of the above Nyquist diagram. This diagram may be
viewed as a transcendental function; however, it can
be approximated closely with a high-order rational
function for the sake of both detailed design
evaluation and controller design implementation.
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Fig. 7. Asymptotic Bode diagram with Bode step

4. System trades by asymptotic Bode-step methods

This section describes the application of the Bode
integrals for evaluating the performance of multiple
system configuration option. The method is applicable
to mechanical servo systems and requires only
approximate knowledge of structural modes together
with the system performance requirements. The method
is capable of rapidly predicting information on the
available  feedback  bandwidth, the available
disturbance rejection, the required sensor and actuator
bandwidth and resolutions, and the required sampling
frequency if a digital implementation is desired.
Moreover, once the system architecture is finalized, a
high-performance controller can easily be realized from
the resulting Bode-step design approach. This, in turn,
shortens the end-to-end life cycle of a concept design
and provides a simple, viable, and inexpensive
solution. The method is by far more advantageous over
the conventional approach since it eliminates the
number of design iterations. The initial selection
process of a conceptual design can be summarized as
follows.

Asymptotic Bode Step Algorithm:

1. Define desired values for phase and gain stability
margins, 180y degrees and x dB, respectively.
Typically, y = 1/6 and x = 10 dB.

2. Approximate the slope of the open-loop gain in the
low-frequency range by -12(1- y) dB per octave.

3. Choose the slope of the loop shape for high-
frequency range to account for sensor noise,
plant uncertainties, structural modes, and
sampling frequency discretization. The typical
value is —18 dB per octave.

4. Estimate the frequency f, and damping £ of the

lowest and dominant structural mode for each
system configuration option.

5. Draw the high-frequency asymptote for each case
such that each line pass through a corresponding
point whose associated frequency and gain are
fyand -(x +20log,,Q), where Q@ =1/&.

6. Find the frequency f, that corresponds to a point

with the gain —x on the above asymptote.

7. Draw the Bode step as a flat segment whose end
pointis f_, its starting point is f,, and its width
is 1 octave. If the slope of the high-frequency
roll-off corresponds to a third-order pole or less,
1 octave is usually sufficient; otherwise, the
Bode step width should be about 1.2 octaves.

8. Once f,is determined in Step 7, draw the low-



frequency asymptotic linc such that it passes
through the starting point of the Bode Step with a
slope that was determined in Step 2. Find the
crossover frequency f,, where the line crosses

the zero dB level.

9. Assess the available control performance for
each system configuration option,

10. Once choices are narrowed, approximate the
associated Bode plots by rational transfer
functions. Extract controller transfer function for
each particular plant. Perform simulations to
provide additional bases for tradeoffs.
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Fig. 8. Proposed evaluation of a concept design.

5. A conceptual design example

The proposed Bode step algorithm has been employed
in the design process of the retroreflector carriage of a
spacecraft interferometer subsystem, depicted in
Figure 9. The corner cube of the carriage is required to
translate back and forth to vary the optical paths
lengths of an optical interferometer. The motion of the
translator is cyclic and is expected to accelerate from
rest and settle to a constant rate of nearly 1 cm/sec over
0.3 seconds and maintain the rate for 4 seconds and
sometimes for 16 seconds and come to rest over 0.3
seconds. The motion then repeats. The performance of
this subsystem is most stringent in rate and is required
to follow the constant scan rate with a velocity ripple of
no more than *3 %.

The carriage has several structural modes that are
related to the longitudinal mode of the cable (about
100 Hz), bending mode of the rollers (about 116 Hz),
and the rocking mode of the rollers (about 96 Hz).
The average moment of inertia reflected to the motor
axis is about 0.02 kgm® The motor drum radius is
approximately 4 cm.
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Fig. 9. Retroreflector carriage design

The preliminary control system design must assess
performance for a set of mechanical plants with
different structural modes and various friction
characteristics. The data must be provided to system
designers to choose appropriate encoder, motor,
electronics, bearings type and preloads, and key
elements in the supporting structure,

6. Determination of the available feedback

Figure 10 shows a block diagram representation of the
feedback control. The encoder data is sampled at
100 Hz and is used to calculate the input to the motor
without substantial delays. Since the sampling
frequency is of the same order of the structural
resonance, the resulting LTV system has substantial
phase uncertainty at the frequency of the structural
modes. Therefore, the mode must be gain-stabilized.
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Fig. 10. Block diagram of the feedback loop

As was stated earlier, the feedback bandwidth f, is
generally limited by sensor noise, sampling period,
and plant structural modes. The encoder accuracy in
this example is quite high. Therefore, the resulting
quantization noise is not expected to impact the
feedback bandwidth or shaping of the loop gain. The
sampling frequency, however, limits the bandwidth.
The conventional rule of thumb is to set the feedback
bandwidth to be less then 10-15% of the sampling
frequency, i.c. less than 10-15 Hz. To determine the
cffects of the structural modes, the gain and phase
stability margins are sclected to be the typical values of
10 dB and 30 degrees, respectively.

As a result, the slope of the open-loop gain in the low-
frequency range is about -10 dB per octave. The next
step is to sclect the high-frequency roll-off. In this
example, it is sufficient to characterize the high-



frequency loop shape by a third order pole, or
equivalently, -18 dB per octave roll-off. This, together
with the lowest frequency of the structural modes,
implies that the feedback bandwidth f, must satisfy

fo <025£,07% =025(96)(100)™"* ~ 52 Haz.

It then follows that the structural modes have the most
impact on the feedback bandwidth. Therefore, the
crossover frequency f is set to be 5.2 Hz. Figure 11

illustrates the resulting loop gain design.
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Fig. 11. Asymptotic Bode diagram

As is seen, the above procedure easily constructs a
loop design based on minimal information on
structural modes and a target stability margin. The
information from the above loop design can be
studied further to estimate the time response
characteristics like rise time and settling time without
the actual design of the control laws. The loop design
can easily be redesigned for different values of
frequency and damping of structural modes.
Figure 12 demonstrates the trade-off results for
different values of the frequency f,, and the quality

factor Q. It is seen that as f, decreases or Q

increases, the available feedback bandwidth, and
consequently, the available disturbance rejection
decreases. As a result, the rise time increases which in
turn degrades that available control performance.

As an example, suppose that the motor used in the
servo loop has 45 slots. Then, the resulting motor
reluctance cogging torque is a disturbance torque
whose frequency is about 2 Hz for the specific scan
rate of the servo system. If the control bandwidth is
4 Hz, the cogging disturbance torque is amplified by
positive feedback in the crossover area by about 2
times. However, for a control bandwidth of 10 Hz,
this disturbance torque is attenuated by about 2 times.
The difference in these two cases is about 12 dB.

Such a difference is significant and serves as a
motivating factor in the hardware selection process.
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Fig. 12. Sensitivity results for different values of
frequency and damping of the structural modes.

7. Controller design

The application of the asymptotic Bode method is
capable of reducing the number of available
configuration options during the initial phase of a
concept design. To finalize the particular choice of
hardware, a more detailed analysis must be conducted
that includes the effects of friction, uncertainties,
sensor noise, unmodeled dynamics, phase delay, and
discretization.

The asymptotic Bode diagram developed in the
previous section can be approximated with rational
transfer functions. Figure 13 shows the plot of the
normalized transfer function

1115’ +555 +1105 + 36

s st 4775 43452 49754 83
with the crossover frequency of 1 rad/sec, a Bode step
of approximately 1 octave long, a low-frequency
asymptotic slopc of -10dB per octave, a high-
frequency asymptotic slope of ~18dB per octave, a
gain margin of 10dB, and a phase margin of 30
degrees [4]. Figure 13 shows the associated Nyquist
diagram in the L-plane. It is then an easy task to
extract a controller transfer function from the above
loop design.




Suppose the normalized plant is represented by 1/s57.
In addition, a nonminimum phase lag is also included
in the plant model to account for the effect of
sampling period. In this setting, the normalized plant
transfer function is given by

1 10-5s
P(s) = —
) s 10+s

and the corresponding normalized controller is

115> +555> +110s+36
sY 4775 + 3452 + 975+ 83
Therefore, the normalized loop transfer function is

C(s)=

-s+10
10+s

T(s)= C(s)—lz—
s

The controller C(s) can be decomposed further into
the sum of two parallel cascades of low-pass and
high-pass transfer functions as shown in Figure 14.
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Fig. 12. Normalized open-loop response
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Fig. 13. Normalized L-plane Nyquist diagram

The normalized prefilter function is

s* 4 0ys+ 08102 5* +050,5+ 0F

s* + 20,5+ 08102 s* +0.6w,5 + 02

R(s)=

The functions of the compensator and prefilter
were de-normalized for the crossover frequency to be 6
Hz, and the compensator was cascaded with a link

2505 +2050
s+1

that together with the linearized plant produces de-
normalized nominal plant.

8. System model and simulation

The SIMULINK system model is shown in Fig. 14.
The friction characteristic is static piece-linear with
certain stiction and Coulomb level. The friction model
includes saturation links and a summer. The slope of
the friction torque can be adjusted with appropriate
gain coefficients in the friction model. The coefficients
have been chosen for the worst case: the stiction peak
duration equals a half period of the oscillation
corresponding to the closed loop controller.

Using plots Fig. 11, the feedback bandwidth (the
crossover frequency) is chosen to be 6 Hz. The loop
response is shaped with a Bode step, with 30° phase
guard-point stability margin and 10dB gain guard-
point stability margin, and with -18 dB/oct high-
frequency asymptotic slope.

In the simulations we use an motor model with
torque constant 0.32 Nm/A and 1.7 Q winding, with
4% torque variations as a function of the angle, with 45
slots, and with 0.01 Nm peak-to-peak ripples in the
torque (of cogging). The plant equivalent moment of
inertia relative to the shaft of the motor is 0.02 kgm?®.
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. Fig. 14. System model; the structural resonances not
~ The motor is driven by a voltage source, so that shown
the relatively low motor winding resistance serves as
the output impedance of the driver. As can be shown,
in this case the motor cogging and torque variations

have lesser effect on the controlled variables. - 0.32
The compensator transfer function is splitted into
low-frequency and high-frequency parallel paths. In 0.3 /\ f\ P iR e

front of the low-frequency path a saturation is placed ’
with threshold 0.1 to improve the transient response to -

large amplitude commands and to provide global 0.28

stability. The prefilter in the command path includes

two notches tuned at the frequency close to the 0.26

crossover. The link (s + 400)/(s + 400) represents the

phase delay associated with the sampling. ' 02 04 06 08 1

The simulation results are shown in Figs. 15-18.
As seen in Fig. 15, the turn-around angle of 0.064 rad
is covered in 0.3 sec. As seen in Fig. 16, angular
velocity becomes constant as desired with better than
3% accuracy in approximately 0.15 sec. On the
velocity time-history, the ripples at times up to 0.3 sec
are from the controller closed loop response. The

Fig. 16. Angular velocity, rad/sec

lower-frequency ripples at larger times are from the The motor torque time-history is shown in Fig. 17.
cogging (the cogging will be smaller with an 0.2
appropriate motor).
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0.02¢ /‘ -
0 Fig. 17. Motor torque, Nm
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The stiction and Coulomb torque seen in Fig. 18.

Fig. 15. Angle, rad
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Fig. 18, Friction torque, Nm

Without friction, the velocity time history is shown
in Fig. 19. The velocity settles to the required accuracy
in 0.2 sec.
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Fig. 19. Velocity plot when friction is absent

9. Flexible mode

From Fig. 3 it is seen that the chosen crossover
frequency of 6 Hz corresponds to the flexible mode
100Hz with Q of 15. However, the modes in the plant
are collocated, and due to the ratio of participating
masses the poles will be rather close to zeros, say,
within 20% in frequency. Then, the control system
should be stable even with lower frequency of the
flexible mode and with higher Q.

A collocated flexible mode with the frequency of
the poles 60 Hz, of the zeros 50.3 Hz, and 0.01
damping was introduced in the plant as a cascaded link
after the inertia link with transfer function

s + 63s + 100000 '
st + 255+ 142000

The flexible mode (the poles) are substantially
damped by the low output impedance of the driver
transformed into low output mobility of the motor.
However, when the driver is saturated, the damping
effect decreases, and a system without substantial
attenuation in the loop gain can be only conditionally
stable and have a limit cycle. For this reason,
substantial loop gain attenuation at the pole frequency
provided by the Bode Step response is necessary.

The results of the obtained system simulation are
very similar to those for the system without structural
modes; the system remains stable.

Conclusions

The proposed method eliminates the need for designing
control laws or designing a high-fidelity model in order
to estimate the utmost available performance of a
system during the initial design process. In addition, the
method provides a simple tool for the extraction of a
final controller design from a resulting optimal loop
response in the final stages of a control system design.

Acknowledgment.

The research was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under
a contract with the National Aeronautic and Space
Administration. The authors thank Drs. R. Laskin and
E. Wong for discussions.

References

1. H. W. Bode, Network Analysis and Feedback
Amplifier Design. Van Nostrand, N.-Y ., 1947.

2. B. J. Lurie, Feedback Maximization. Artech
House, Dedham, Ma: 1986.

3. B. Lurie, R. Laskin, E. Wong, JPL Engineering
Memorandum 343-1165, 1990.

4. B. Luriec and P. Enright, Advanced Classical
Control, manuscript, 1998.



